

Decarbonisation & Sustainability Day

Thursday 8th of june 2023

Solar Energy Solutions

Erwin Theys

AGENDA

The Sun, a free energy source

AGENDA

The Sun, a free energy source

Why Photovoltaïc panels?

Solar radiation is free of charge (according to NASA a global average of 1366 Watt / sqm

Participate in the CO2 neutrality of electricity

Added value on the land / property

୍ର ଜୁନ୍ଦୁର ଜୁନ୍ଦୁର

Insure a profitable energetic transition

Astronaut photograph ISS015-E-10469, courtesy NASA/JSC Gateway to Astronaut Photography of Earth.

Why does Eneria start with Photovoltaïc panels?

- Eneria wants to help you to make the energy transition profitable
- Eneria is a full scope technology provider and integrator
- From 2025, obligation in Flanders to install PV panels on min 10% of roof surface (for companies >1000 MWh consumption)
- Technical know-how for bigger installations (medium voltage, ...) in-house

K MONNOYEUR

AGENDA

The Sun, a free energy source

Rooftop

- Most common and cheapest installation
- Typical tilt 10 to 12° to reduce windload
 Ideal tilt in Belgium: 20° in winter and 50° in summer

<u>South – orientation</u> Highest production / panel

<u>Flanders</u> : obligation by the government to install by 2025 at least 10% of roof surface with solar panels (companies consuming >1.000 MWh/year)

East/West – orientation Less power production/panel Better spread of production during the day More panels/m² due to less shadow overlap

- Similar complexity as rooftop installation, but in average abut 20% more expensive
- Up to 1MWp / Ha, depending on terrain and orientation
- Normally permitted on marginal terrain or permit for agriculture terrain if animals are added.

- Less water evaporation in summer times
- Less algae growth
- Higher efficiency due to cooling effect
- Without losing precious land surface

Special attention to:

- Anchoring : special study on flexible anchoring due to wind, water level changes, ...
- Not damaging liner with anchoring cables
- Certification of used plastics
- All components need to hold the BS6920 Certificate. This regard the suitability of nonmetallic products for use in contact with water intended for human consumption with regard to their effect on the quality of the water.

Ideal for confined/marginal spaces

25-40% more energy production with same installed power + wider production graph during the day (combination of South + East/West)

Build-in intelligence for high wind protection

Carpark

DolExpo – France

- 10 Carports installed
- Total : 5998m²
- 1867 kWp 4148 panels
- Reclaim parking lot
- Car protection
- Less airco consumption in summer times for electric cars

K MONNOYEUR

Montlhéry – France

- 2 Carports installed
- Total : 500m²
- 100 kWp 250 panels
- Reclaim parking lot
- Car protection
- Less airco consumption in summer times for electric cars

AGENDA

The Sun, a free energy source

Simulation Tools

K MONNOYEUR

Simulation Tools

Solar Access by Month												
Description	jan	feb	mar	apr	may	jun	jul	aug	sep	oct	nov	dec
Field Segment 1	82%	90%	95%	98%	98%	98%	98%	98%	96%	92%	84%	84%
Field Segment 2	99%	99%	99%	99%	98%	98%	98%	98%	99%	99%	99%	99%
Solar Access, weighted by kWp	84.2%	91.5%	96.0%	97.9%	98.2%	98.1%	98.0%	97.9%	96.5%	93.1%	85.5%	85.5%
AC Power (kWh)	4,040.5	6,782.3	13,482.1	20,161.2	25,025.6	25,969.0	25,198.7	22,611.4	16,051.2	10,134.3	4,292.5	2,586.4

03

Simulation Tools

<u>Hide table</u>

Month	GHI (kWh/m ²)	POA (kWh/m ²)	Shaded (kWh/m ²)	Nameplate (kWh)	Grid (kWh)
January	24.2	29.0	24.4	4,529.7	4,040.5
February	38.0	42.6	38.9	7,339.6	6,782.3
March	73.9	79.6	76.4	14,552.9	13,482.1
April	112.4	116.8	114.3	21,897.2	20,161.2
May	144.4	146.6	143.9	27,596.9	25,025.6
June	152.8	153.5	150.7	28,952.5	25,969.0
July	147.6	149.5	146.6	28,095.7	25,198.7
August	131.2	135.0	132.2	25,307.5	22,611.4
September	90.6	97.1	93.6	17,854.4	16,051.2
October	57.6	63.9	59.5	11,233.6	10,134.3
November	25.8	30.3	25.9	4,834.2	4,292.5
December	15.8	18.4	15.8	2,941.4	2,586.4

Clipping: 0.0% Wiring: 0.1%

Temperature: 0.8%

Irradiance: 1.7%

Mismatch: 5.5%

	Description		Output	% Delta
		Annual Global Horizontal Irradiance	1,014.5	
Irradiance (kWh/m²)		POA Irradiance	1,062.2	4.7
		Shaded Irradiance	1,022.0	-3.8
		Irradiance after Reflection	980.4	-4.1
		Irradiance after Soiling	960.8	-2.0
		Total Collector Irradiance	960.9	0.0
		Nameplate	195,147.7	
		Output at Irradiance Levels	191,922.5	-1.7
		Output at Cell Temperature Derate	190,431.3	-0.8
Energy		Output After Mismatch	180,037.1	-5.5
(kWh)		Optimal DC Output	179,784.1	-0.1
		Constrained DC Output	179,782.9	0.0
		Inverter Output	176,906.4	-1.6
		Energy to Grid	176,590.2	-0.2
Temperature M	etrics			
		Avg. Operating Ambient Temp		13.4
		Avg. Operating Cell Temp		18.6
Simulation Met	rics			
			Operating Hours	459
			Solved Hours	450

Reflection: 4.1%

Soiling: 2.0%

J

Simulation Tools

AGENDA

The Sun, a free energy source

Business case : Ecological

PV panels can help you to reduce CO2 footprint Reduce the purchase of CO2 emission rights EEX (± 80€/ton CO2)

Flemisch electricity grid = average 273gr CO2/kWh Data: Veka 2020

To compensate CO2 emission of the <u>production</u> of the PV panels by making green electricity:

	Glass-backsheet	Glass-glass	
China	3,4	3,2	year
EU	2,0	1,8	year

CO2 emissions for the production of the panels (including transport,)

https://www.sciencedirect.com/science/article/abs/pii/S0927024821003202

b) Glass-glass module, EU

MG-Si

4.9 %

Poly-Si

34.8 %

Glass 14.2 %

Wiring 1.99

Electricity

- Transport 1.0 %

End-of-life 2.5 %

Other

- EVA-2:9 % Junction box-3:3 Total: 420 kg CO2-eq/kWp

69.6 %

Wafer

01	Self - consumption	
02	PPA – Power Purchase Agreement	efits
03	Surplus production stored in battery	c bene
04	Injection contract – energy supplier	onomi
05	Energy Sharing	с Ш

Business case : Ecological

01

Self - consumptior

- Due to high energy cost, the most beneficial is to consume all electricity produced.
- Saves on full scope cost: energy, distribution transmission and taxes.
- Keep in mind that PV panels do not help a company to reduce capacity pricing (in contradiction to private users)

PPA – Power Purchase Agreement

- A Power Purchase Agreement (PPA) is a power offtake agreement between two parties.
- A green electricity producer and an buyer of this electricity (consumer or trading company)
- A PPA is in general a long-term contract (10-15years) and includes:
 - Amount of electricity to be supplied
 - Negotiated price

02

- Who's responsible for what risks
- Penalties for not honoring the contract
- Buyer also needs a contract with normal supplier in case no PV production
- It removes partial the risk of fluctuations in the electricity markets, enabling investments.

03

- Surplus energy produced can be stored in batteries (see breakout session on battery storage)
- Typical for companies: energy produced in the summer over the weekend
- All energy stored to be used time-shifted = 100% scope cost, so no distribution costs, ... to be paid.

Surplus production stored in battery

Injection contract – energy supplier

- 05/2023: 38 €/MWh 111,7€/MWh (mijnenergie.be)
- Low return on investment

04

• The easiest way by reselling without any hassle or additional investment

- Legally possible between 2 companies with different electricity suppliers since 01/01/2023
- Legislation unclear : Energy sharing needs to be at "cost", but not defined how to calculate
- Only energy component. Net distribution cost still needs to be payed
- Electricity suppliers charged an additional admin fee which is not defined by law

KEY TAKEAWAYS

Remember, the cheapest energy is the one <u>not</u> consumed

MONNOYEUR

Page 29